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ABSTRACT 

In this paper, I present a non-extensive summary of Hawking Radiation and current 

research in this field.  I also include topics about the Holographic Conjecture, that entropy 

in the universe scales as area and not volume, and about the Information Loss Paradox 

about pure states being converted to mixed states when a black hole evaporates. 

 

Introduction 

In 1975, Hawking [1] showed that a black hole with surface gravity κ radiates with 

temperature 

𝑇H =
ℏ𝜅𝑐3

2𝜋𝐺𝑘𝐵
 

and Bekenstein [2] showed that this black hole has a corresponding entropy 

𝑆BH = 
𝑐3𝐴

4ℏ𝐺
 

where 𝐴 is the surface area of the event horizon.   

The Four Laws of Black Hole Thermodynamics  

In 1973, Bardeen, Carter and Hawking [4] published the four laws of black hole 

thermodynamics, listed below.  

       𝑍𝑒𝑟𝑜𝑡ℎ 𝐿𝑎𝑤.  The surface gravity 𝜅 of a black hole is constant over the event horizon. 

This is similar to the zeroth law of ordinary thermodynamics, which states that the temperature 

of a sys-tem is constant when the system is in thermal equilibrium. 

       𝐹𝑖𝑟𝑠𝑡 𝐿𝑎𝑤.   Two stationary black holes with small variations, 𝛿𝑀, 𝛿𝐽, 𝛿𝑄; where M is 

the mass, J is the angular momentum, Q is the charge, and A is the area of the black hole,   

𝛿𝑀 =
𝜅

8𝜋𝐺𝑐4
𝛿𝐴 + Ω𝛿𝐽 + Φ𝛿𝑄, 

where Ω is the angular velocity of the black hole and Φ is the electric potential.  

(1) 

(3) 

(2) 
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This is similar to the first law of thermodynamics  

𝑑𝑈 = 𝑇𝑑𝑆 + 𝑝𝑑𝑉, 

and the temperature T is a multiple of 𝜅 if the entropy S is a multiple of the surface area A [1].  

Note that the relation (3) holds when there is no matter around the black hole, in which case 

the stress-energy tensor is zero.  Matter terms are added to the right-hand side of (3) if there is 

matter around the black hole.  On the horizon, the angular velocity Ω and the electric potential 

Φ are constant. 

       𝑆𝑒𝑐𝑜𝑛𝑑 𝐿𝑎𝑤.   The surface area A of the event horizon of a black hole never decreases, 

that is, the variation 

𝛿𝐴 ≥ 0. 

This is stronger than the second law of thermodynamics, 𝛿𝑆 ≥ 0, since no black hole can split 

into two black holes, but two black holes can merge to form a larger black hole with surface 

area larger than the sum of the surface areas of the initial black holes.  Thus, the surface area 

of each black hole cannot decrease.   

       𝑇ℎ𝑖𝑟𝑑 𝐿𝑎𝑤.   It is not possible, by a finite sequence of steps, to reduce the surface gravity 

𝜅 of a black hole to zero. 

This law has not been rigorously proven, but there is good reason to think this law holds, 

assuming weak cosmic censorship.  If 𝜅 can be reduced to 0 in a finite sequence of steps, we 

can extend this process to yield a naked singularity, which contradicts asymptotic 

predictability.  Cosmic censorship or asymptotic predictability is the hypothesis that 

singularities of gravitational collapse cannot affect events near future null infinity ℐ+, and a 

naked singularity is a singularity without a corresponding event horizon.  Thus, the weak 

cosmic censorship hypothesis implies that no naked singularities other than the Big Bang can 

exist in the universe.  If this hypothesis does not hold, many results of black hole theory, 

including the second law (mentioned above) would fail. 

The Generalized Second Law 

Consider the following thought experiment proposed by Bekenstein [3]:  Suppose a box with 

entropy 𝑆 > 0 falls into a black hole; a black hole, to an observer outside the event horizon 

that is in equilibrium is uniquely characterized by the parameters M, J, and Q.  The entropy of 

the universe outside this black hole has decreased by 𝑆, and the entropy of an object inside the 

black hole cannot be measured by this observer, opening the possibility that the net entropy of 

the universe has decreased, which is not in accordance with the second law of ordinary 

thermodynamics.   

This is resolved by assigning an entropy 𝑆BH = 𝜂
𝑐3A

ℏ𝐺
 to a black hole, where 𝜂 is a 

dimensionless constant of order one and A is the surface area of the event horizon of the black 

hole.  We then consider the 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑤:  The sum of the entropy of 

(5) 

(4) 

(6) 
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matter outside the black hole and the entropy of the black hole 𝑆BH never decreases.  That is, 

the variation 

𝛿(𝑆matter + 𝑆BH) = 𝛿 (𝑆matter + 𝜂
𝑐3A

ℏ𝐺
) ≥ 0, 

where 𝑆matter is the entropy of the matter outside the black hole.   

Hawking Radiation and Bekenstein-Hawking Entropy 

The Hawking temperature (1) has been derived in many ways.  Parikh and Wilczek present a 

derivation of the Hawking temperature for a Schwarzschild black hole, by determining the rate 

of tunneling through the black hole’s event horizon [5].  Recall that the Schwarzschild metric 

in Painlevé-Gullstrand coordinates is given by 

𝑑𝑠2 = (1 −
2𝐺𝑀

𝑐2𝑟
) 𝑑𝑡̅2 −

2

𝑐
√
2𝐺𝑀

𝑐2𝑟
𝑑𝑡̅𝑑𝑟 −

1

𝑐2
𝑑𝑟2 −

𝑟2

𝑐2
(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2). 

 where 𝑀 is the mass of the black hole.  For radial null geodesics, 𝑑𝑠 = 𝑑Ω = 𝑑𝜃2 +

sin2 𝜃 𝑑𝜙2 = 0, and dividing (7) throughout by 
𝑑𝑡̅2

𝑐2
, 

(
𝑑𝑟

𝑑𝑡̅
)
2

+ 2√
2𝐺𝑀

𝑟
(
𝑑𝑟

𝑑𝑡̅
) − (𝑐2 −

2𝐺𝑀

𝑟
) = 0. 

This is a quadratic equation in 
𝑑𝑟

𝑑𝑡̅
, hence the radial null geodesics are given by 

𝑑𝑟

𝑑𝑡̅
=
1

2
(−2√

2𝐺𝑀

𝑟
± √(2√

2𝐺𝑀

𝑟
)

2

+ 4(𝑐2 −
2𝐺𝑀

𝑟
)) =  −√

2𝐺𝑀

𝑟
± 𝑐. 

Hawking radiation is produced by the following process, as mentioned by Parikh and Wilczek 

[5].  A virtual pair of particles forms just inside the event horizon of a black hole, then one 

member of the pair tunnels outside the horizon while the other falls in.  Since this is a virtual 

pair of particles, the particle that falls toward the singularity must be virtual and have negative 

energy, while the particle that tunnels out must have positive energy, for the net energy of the 

pair to be zero.  This implies that the mass of the black hole decreases in this process.  Suppose 

that this particle is in the 𝑠-wave (that is, in the state with the quantum number 𝑙 = 0) with 

energy 𝜔 ≪ 𝑀𝑐2, and suppose that this 𝑠-wave moves at the speed of light.  The gravitational 

redshift of this s-wave at a distance 𝑟0 from the singularity is 
𝜆0

𝜆1
= √(1 −

2𝐺𝑀

𝑐2𝑟0
) (1 −

2𝐺𝑀

𝑐2𝑟1
), 

where 𝑟1 =
2𝐺

𝑐2
(𝑀 −

𝜔

𝑐2
) is the origin of this s-wave and 𝜆𝑖 is the wavelength of the 𝑠-wave 

when measured from position 𝑟𝑖.  When 𝑟𝑖 → ∞, the s-wave when measured from infinity is 

very blueshifted, since 𝜔 ≪ 𝑀𝑐2.  Thus, the Wentzel-Kramers-Brillouin (or WKB) 

approximation holds, that is, the functions of interest vary slowly with position.    Let the 

generalized momentum, in the Hamiltonian formulation, be 𝑝𝑖 =
𝜕ℒ

𝜕𝑥𝑖
,  where ℒ is the 

Lagrangian.  Then the action 𝐼 is given by 

(7) 

(9) 

(8) 

(10) 
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𝐼 = ∫ 𝑝𝑟 𝑑𝑟

𝑟1

𝑟0

= ∫ ∫ 𝑑�̌�𝑟  𝑑𝑟

𝑝𝑟

0

𝑟1

𝑟0

, 

where the particle travels from 𝑟0 =
2𝐺

𝑐2
(𝑀 −

𝜔

𝑐2
) (where it is produced) to 𝑟1 =

2𝐺𝑀

𝑐2
, and where 

�̌�𝑟 is an integration variable (the second integral on the right-hand side is a contour integral.  

First, Hamilton’s equation is  

𝑑𝑟

𝑑𝑡̅
=
𝜕ℋ

𝜕𝑝𝑟
=
𝑑ℋ

𝑑𝑝𝑟
|
𝑟

 

where ℋ is the Hamiltonian.  Since the particle has energy 𝜔, this particle feels a gravitational 

force as if the black hole only had a mass 𝑀 −
𝜔

𝑐2
, since the other particle in the pair had an 

energy −𝜔, hence the radial null geodesics are given by (9), replacing 𝑀 by 𝑀 −
𝜔

𝑐2
.  By (11), 

equation (10) becomes 

                      𝐼 = ∫ ∫ (
𝑑ℋ

𝑑𝑝𝑟
)
−1

𝑀𝑐2

𝑀𝑐2−𝜔

𝑟0

𝑟1

𝑑𝑟 𝑑ℋ = ∫ ∫
𝑑𝑟 𝑑ℋ

𝑑𝑟
𝑑𝑡̅⁄

𝑀𝑐2

𝑀𝑐2−𝜔

𝑟0

𝑟1

= ∫ ∫    
𝑑𝑟 𝑑ℋ

𝑐 − √
2𝐺(𝑀𝑐2 − 𝜔′)

𝑐2𝑟

𝑀𝑐2

𝑀𝑐2−𝜔

𝑟0

𝑟1

  ,                                                               

because ℋ is also the energy required to escape from the event horizon; when ℋ = 𝑀𝑐2 −

𝜔′, the particle follows the radial null geodesics when replacing 𝑀 by 𝑀 −
𝜔′

𝑐2
; and the mass 

of the black hole decreases from 𝑀 to 𝑀 −
𝜔

𝑐2
. Note that 

𝑑𝑟

𝑑𝑡̅
= 𝑐2 − √

2𝐺𝑀

𝑟
 in (12) because these 

are outgoing geodesics; for ingoing geodesics, 
𝑑𝑟

𝑑𝑡̅
= −(𝑐2 + √

2𝐺𝑀

𝑟
).  Since ℋ =  𝑀 −

𝜔′

𝑐2
,  

𝑑ℋ = −
1

𝑐2
𝑑𝜔′, 

hence by (12), the part of the action responsible for the tunneling of particles of energy 𝜔 

through the event horizon is the imaginary part of the action 

Im 𝐼 = Im 

(

 ∫ ∫
−𝑑𝑟 𝑑𝜔′

𝑐 − √
2𝐺(𝑀𝑐2 − 𝜔′)

𝑐2𝑟

𝑟1

𝑟0

𝜔

0
)

  

where the integral over 𝜔′ is a contour integral.  Then (14) implies that 

(11) 

(12) 

(13) 

(14) 

(15) 
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Im 𝐼 =
4𝜋𝐺𝜔

𝑐5
(𝑀𝑐2 −

𝜔

2
) . 

Hence the corresponding tunneling rate is given by 

Γ ~ 𝑒−
2
ℏ
 Im 𝐼 = 𝑒

−
8𝜋𝐺𝜔
𝑐5ℏ

(𝑀𝑐2−
𝜔
2
)
. 

The Boltzmann distribution for the distribution of particles in a system with energy 𝜔 is given 

by  

𝐹 ~ 𝑒
−
𝜔
𝑘𝐵𝑇 

where 𝐹 is the distribution and 𝑇 is the temperature of this system.  However, the tunneling 

rate is the distribution, hence to lowest order in 𝜔 ~ ℏ,  (note 𝜔 is on the order of ℏ by the 

Heisenberg Uncertainty Principle), 

8𝜋𝐺𝜔

𝑐5ℏ
(𝑀𝑐2) =

𝜔

𝑘𝐵𝑇
⇒ 𝑇 =

𝑐3ℏ

8𝜋𝑀𝐺𝑘𝐵
. 

The surface gravity for a Schwarzschild black hole is 𝜅 =
𝑐2

4𝐺𝑀
, hence (18) becomes 

𝑇 =
ℏ𝜅𝑐3

2𝜋𝐺𝑘𝐵
, 

which is the Hawking temperature in equation (1).  The corresponding Bekenstein-Hawking 

entropy is given by 

Δ𝑆𝐵𝐻 = −
4𝑐3𝜋𝐺𝜔

ℏ
(2𝑀𝑐2 − 𝜔) =

4𝑐3𝜋𝐺

ℏ
((𝑀𝑐2 − 𝜔)2−(𝑀𝑐2)2). 

Hence,  

𝑆𝐵𝐻 =
4𝜋𝐺

ℏ
𝑀2𝑐7 =

4𝜋

ℏ𝐺
(
2𝐺𝑀

𝑐2
)
2 ℏ𝑐3

4
=
𝑐3𝐴

4ℏ𝐺
 

is the Bekenstein-Hawking entropy of a black hole whose event horizon has a surface area 

𝐴 = 4𝜋𝑟𝑆
2 = 4𝜋 (

2𝐺𝑀

𝑐2
)
2

.  (Note that the Schwarzschild coordinate 𝑟 is defined so that the 

surface area of a sphere of radius 𝑟 is 4𝜋𝑟2.) 

The Holographic Conjecture 

From the preceding section, the entropy of a black hole is proportional to its surface area, and 

not its volume.  It is conjectured by Susskind [6] and ‘t Hooft [7] in 1994 that this relation 

holds for any gravitational system, that is, the entropy of the system is proportional to the 

surface area of its boundary (a two-dimensional surface) and in particular, that this property 

holds in the universe.   

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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First, the planck length 𝑙 = √ℏ𝐺 𝑐3⁄  is the smallest measurable scale, hence a minimum of the 

cube of the planck length of space is required to store a bit of information.  The number of 

sequences of bits that can be stored in a space 𝔐 with volume 𝒱 is 2
𝒱
𝑙3⁄  where 𝑙 is the Planck 

length.  The corresponding entropy of this system, given three degrees of freedom, is thus 

𝑆𝔐 = ln (2
 𝒱
𝑙3⁄ ) =

𝒱

𝑙3
ln 2 ~

𝒱

 𝑙3
. 

The entropy of a black hole 𝔅 occupying the space 𝔐 (we assume that 𝔐 is roughly spherical) 

must be less than the entropy of some region of space 𝔇 ⊊ 𝔐.   Enough matter can be added 

to this region 𝔇 to collapse it into a black hole.  The generalized second law of thermodynamics 

states that this new black hole must have a higher entropy than that of the state that formed it.  

However, this black hole is contained in 𝔇 and is hence strictly contained in 𝔐.  However, 

such a black hole must have less entropy than a black hole occupying the space 𝔐, 

contradicting the preceding assumptions.  This argument shows that this region 𝔐 must only 

have an entropy proportional to its surface area (as do black holes) and not to its volume.   

Susskind [6] has proposed that no bit of information on a screen can be stored in less than one 

planck area, or square planck length 

𝑙2 =
ℏ𝐺

𝑐3
. 

 

 

Figure 1.  The projection of a black hole onto the screen.  Note that this projection will     appear 

as a series of closely spaced points on the screen. 

 

 

 

 

 

 

 

 

(22) 

(23) 
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A parton is defined an elementary constituent of matter.  Consider a two-dimensional screen, 

the image of a black hole 𝔅, whose event horizon has a surface area 𝐴, is the set of all points 

on the screen such that when a light ray is emitted perpendicular to the screen, then the 

corresponding null geodesic ends in 𝔅.  (See Figure 1.)   Then if 𝐴screen is the area of the 

projection of the black hole on the screen, then 

𝐴screen ~ 𝐴. 

Now the focusing theorem states that if a packet of light has area 𝑎(𝜆) (𝜆 is the affine parameter 

for null geodesics) then the derivative 

𝑑2

𝑑𝜆2
(√𝑎) =

1

2√𝑎

𝑑𝑎

𝑑𝜆
≤ 0. 

Then the area 𝑎 of this packet of light decreases (not necessarily strictly) with time, hence any 

area element 𝑑𝐴 on the surface of the event horizon of 𝔅 is mapped to a larger area element  

𝑑𝐴screen ≥ 𝑑𝐴. 

Since the event horizon has an information density of one bit per planck area, the information 

density on the screen is at least one bit per planck area. 

Suppose that another black hole 𝔅′ is behind 𝔅.  It appears initially as if no null geodesic 

corresponding to a photon being emitted perpendicular to the screen ends in the black hole 𝔅′.  
However, the black hole 𝔅 acts as a gravitational lens, so that when 𝔅′ is directly behind 𝔅, 

𝔅′ forms an Einstein ring around 𝔅, and an application of the focusing theorem (as above) 

shows that the information density does not decrease.  Since the black hole is the most compact 

object, this reasoning holds for any spaces 𝔑 and 𝔑′.  

This reasoning, though, is only semi-classical, and more quantum mechanics is required to 

give the true picture. 

The Information Loss Paradox 

Recall from (1) that the Hawking temperature 𝑇𝐻 is inversely proportional to the square root 

of the surface area of the hole, and by the Stefan-Boltzmann Law, the rate of loss of mass is 

𝑑𝑀

𝑑𝑡
= −𝜖𝜎𝑇𝐻

4𝐴, 

where 𝐴 is the area of the event horizon of the black hole and 𝜖 is the emissivity (this arises 

because black holes are not blackbodies), as mentioned in a review by Prof. Carlip [8].  Then 

the rate of change of mass is inversely proportional to the surface area of the black hole, that 

is, the rate of change of mass is inversely proportional to the square of the mass of the hole 

(since the surface area of a black hole is proportional to the square of its radius, which is 

proportional to the square of its mass).  Thus, in a finite amount of time, the black hole will 

evaporate.   

(25) 

(24) 

(26) 

(27) 
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When a unitary operator 𝑈 (that is, 𝑈†𝑈 = 1) acts on a pure state |𝜓⟩, then the new state 𝑈|𝜓⟩ 
remains pure.  However, if the Hawking radiation is thermal radiation and is in a mixed state, 

and the evaporation process of black hole formed from a pure state is unitary, then a unitary 

operator changes a pure state which formed the black hole to the mixed state, which is Hawking 

radiation.  This is known as the information loss paradox.   

This paradox is a topic of intense debate.  According to Hawking [9], there is no information 

loss resulting from this procedure.  Recall that the outgoing Eddington-Finkelstein coordinate 

𝑣 (also called the advanced coordinate) is given by  

𝑣 = 𝑡 + 𝑟∗ 

where 𝑟∗ is the tortoise coordinate.  Then Hawking [9] says that the information on the ingoing 

particle is stored on the horizon as well as a translation of the Eddington-Finkelstein coordinate 

𝑣, in which case the Hawking radiation is actually a pure state.  It also turns out that this 

construction yields unitary evolution.   

Another theory, proposed by Mathur [10] is that there are no true black holes.  Instead, they 

are fuzzballs, that is, they have an alternative geometry that includes an event horizon, but 

there is no internal singularity, instead the information is distributed roughly uniformly in the 

fuzzball’s interior.  However, this requires that string theory holds. 
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